Inhibitors

Azido-PEG5-triethoxysilane

Cat. No.: HY-140856 Molecular Formula: $\mathsf{C_{_{22}}H_{_{46}}N_{_4}O_{_9}Si}$ Molecular Weight: 538.71

Target: **PROTAC Linkers**

Pathway: **PROTAC**

Storage: Pure form -20°C 3 years

In solvent -80°C 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (464.07 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8563 mL	9.2814 mL	18.5629 mL
	5 mM	0.3713 mL	1.8563 mL	3.7126 mL
	10 mM	0.1856 mL	0.9281 mL	1.8563 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Azido-PEG5-triethoxysilane is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . Azido-PEG5-triethoxysilane is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.
IC ₅₀ & Target	PEGs
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com