

Product Data Sheet

Inhibitors

Screening Libraries

Azido-PEG4-(CH2)3-methyl ester

Cat. No.: HY-140854 CAS No.: 1835759-71-1 Molecular Formula: $C_{13}H_{25}N_3O_6$ Molecular Weight: 319.35

Target: **PROTAC Linkers**

Pathway: **PROTAC**

Storage: Pure form -20°C 3 years

> 4°C 2 years

In solvent -80°C 6 months

> -20°C 1 month

BIOLOGICAL ACTIVITY

Description	Azido-PEG4-(CH2)3-methyl ester is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . Azido-PEG4-(CH2)3-methyl ester is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.	
IC ₅₀ & Target	PEGs	Alkyl/ether
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA