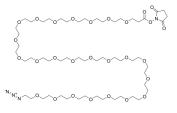
Proteins

Inhibitors

Azido-PEG24-NHS ester

Cat. No.: HY-140762 CAS No.: 2375600-46-5 Molecular Formula: $C_{55}H_{104}N_4O_{28}$ Molecular Weight: 1269.42


Pathway: **PROTAC**

Storage: Powder -20°C 3 years

PROTAC Linkers

In solvent -80°C 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

			٠.		
In	٦	/ 1	11	r	\sim

Target:

DMSO: 100 mg/mL (78.78 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg	
Preparing Stock Solutions	1 mM	0.7878 mL	3.9388 mL	7.8776 mL	
otock ootherns	5 mM	0.1576 mL	0.7878 mL	1.5755 mL	
	10 mM	0.0788 mL	0.3939 mL	0.7878 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (1.97 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.5 mg/mL (1.97 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (1.97 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Azido-PEG24-NHS ester is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . Azido-PEG24-NH ester is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddi reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can all occur with molecules containing DBCO or BCN groups.				
IC ₅₀ & Target	PEGs	Alkyl/ether			

In Vitro PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

			ΕI			

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com