

Screening Libraries

Proteins

Azido-PEG2-C2-amine

Cat. No.: HY-140213 CAS No.: 166388-57-4 Molecular Formula: $C_{6}H_{14}N_{4}O_{2}$ Molecular Weight: 174.2

Target: PROTAC Linkers; ADC Linker

Pathway: PROTAC; Antibody-drug Conjugate/ADC Related

Storage: -20°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

Ethanol: 100 mg/mL (574.05 mM; Need ultrasonic) DMSO: 100 mg/mL (574.05 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.7405 mL	28.7026 mL	57.4053 mL
	5 mM	1.1481 mL	5.7405 mL	11.4811 mL
	10 mM	0.5741 mL	2.8703 mL	5.7405 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (14.35 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (14.35 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (14.35 mM); Clear solution
- 4. Add each solvent one by one: 10% EtOH >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (14.35 mM); Clear solution
- 5. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (14.35 mM); Clear solution
- 6. Add each solvent one by one: 10% EtOH >> 90% corn oil Solubility: ≥ 2.5 mg/mL (14.35 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Azido-PEG2-C2-amine (N3-PEG2-CH2CH2NH2) is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs^[1].

	Azido-PEG2-C2-amine is also a non-cleavable 2 unit PEG ADC linker used in the synthesis of antibody-drug conjugates (ADCs) ^[2] . Azido-PEG2-C2-amine is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.	
IC ₅₀ & Target	PEGs	Non-cleavable Linker
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . ADCs are comprised of an antibody to which is attached an ADC cytotoxin through an ADC linker ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

- [1]. Su S, et al. Potent and Preferential Degradation of CDK6 via Proteolysis Targeting Chimera Degraders. J Med Chem. 2019 Aug 22;62(16):7575-7582.
- [2]. Tominari, Yusuk, et al. Heterocyclic compound. WO2020027225A1.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA