Product Data Sheet

Arotinolol

Cat. No.: HY-122537A CAS No.: 68377-92-4 Molecular Formula: ${\sf C_{15}H_{21}N_3O_2S_3}$ Molecular Weight: 371.54

Target: Adrenergic Receptor; 5-HT Receptor Pathway:

GPCR/G Protein; Neuronal Signaling

Powder -20°C 3 years 4°C 2 years

-80°C In solvent 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

Storage:

DMSO: 125 mg/mL (336.44 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6915 mL	13.4575 mL	26.9150 mL
	5 mM	0.5383 mL	2.6915 mL	5.3830 mL
	10 mM	0.2692 mL	1.3458 mL	2.6915 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.60 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.60 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (5.60 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Arotinolol is a nonselective α/β -adrenergic receptor blocker and a vasodilating β -blocker ^[1] . Arotinolol also shows potency
	for inhibiting the binding of the radioligand 125 I-ICYP to 5 HT $_{1B}$ -serotonergic receptor sites $^{[2]}$. Arotinolol is an
	$antihy per tensive \ agent \ for \ the \ treatment \ of \ a \ variety \ of \ cardiovas cular \ pathologies \ as \ well \ as \ non-cardiovas cular \ diseases^{[1]}.$

5-HT_{2A} Receptor IC₅₀ & Target

In Vitro Arotinolol shows its selectivity of β -adrenergic receptors, the result of Arotinolol for $\beta 1$ and $\beta 2$ adrenoceptors in 125 I-ICYP binding to rat cerebral cortical membranes with pK_i value of 9.74 and 9.26 respectively. The selectively of β 1 and β 2 is equal [2]

Arotinolol shows its potency for inhibiting the binding of the same radioligand to 5HT1B-serotonergic receptor site, Arotinolol displaces 125 I-ICYP binding to 5HT1B-receptors with the pK_i values of 7.97 and 8.16 resepectively for β 1 and β 2 adrenergic receptors $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Arotinolol (oral gavage; 200 mg/kg; 8 weeks) can significantly decrease central arterial pressure (CAP) and pulse wave velocity (PWV), in addition, it reduces aortic collagen depositions and finally improves arterial stiffness in SHR mouse^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	SHR mice $^{[1]}$	
Dosage:	200 mg/kg	
Administration:	Orally gavage; 200 mg/kg; once daily; 8 weeks	
Result:	Improved arterial stiffness in SHR.	

REFERENCES

[1]. Zhou W, et al. Mechanisms of improved aortic stiffness by arotinolol in spontaneously hypertensive rats. PLoS One. 2014 Feb 12;9(2):e88722.

[2]. Hiroshi TSUCHIHASHI, et al. Characteristics of 1251-lodocyanopindolol Binding to 8-Adrenergic and Serotonin-1B Receptors of Rat Brain: Selectivity of 19-Adrenergic Agents

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA