Proteins

Arachidonic acid

Cat. No.: HY-109590 CAS No.: 506-32-1 Molecular Formula: $C_{20}H_{32}O_{2}$ Molecular Weight: 304.47

Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease

Storage: -20°C, protect from light, stored under nitrogen

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light, stored under

nitrogen)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

Ethanol: 100 mg/mL (328.44 mM; Need ultrasonic) DMSO: 100 mg/mL (328.44 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.2844 mL	16.4220 mL	32.8440 mL
	5 mM	0.6569 mL	3.2844 mL	6.5688 mL
	10 mM	0.3284 mL	1.6422 mL	3.2844 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 10 mg/mL (32.84 mM); Suspended solution; Need ultrasonic and warming and heat to 60°C
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.21 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.21 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.83 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.	
IC ₅₀ & Target	Human Endogenous Metabolite	
In Vivo	Arachidonic acid can be used in animal modeling to construct a rat paw edema model.	

Arachidonic acid (ARA) is converted into various lipid mediators, such as prostaglandin E_2 (PGE₂), which is involved in the development of rheumatoid arthritis (RA)^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Gut Microbes. 2023 Dec;15(2):2265578.
- Redox Biol. 2023 Aug 18;66:102857.
- Redox Biol. 15 October 2021, 102168.
- Cell Death Dis. 2023 Jun 13;14(6):359.
- Cell Death Dis. 2020 Sep 15;11(9):756.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Tateishi N, et al. Dietary supplementation with arachidonic acid increases arachidonic acid content in paw, but does not affect arthritis severity or prostaglandin E2 content in rat adjuvant-induced arthritis model. Lipids Health Dis. 2015 Jan 16;14:3.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA