Product Data Sheet

Anthracene-9-carboxylic acid

Cat. No.: HY-101329 CAS No.: 723-62-6 Molecular Formula: C₁₅H₁₀O₂ Molecular Weight: 222.24

Chloride Channel Target:

Pathway: Membrane Transporter/Ion Channel

-20°C Storage: Powder 3 years

2 years

-80°C In solvent 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (562.45 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.4996 mL	22.4982 mL	44.9964 mL
	5 mM	0.8999 mL	4.4996 mL	8.9993 mL
	10 mM	0.4500 mL	2.2498 mL	4.4996 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description Anthracene-9-carboxylic acid (9-Anthracenecarboxylic acid) is an anthracene derivative traditionally used to block and identify Ca²⁺-activated Cl⁻ currents (CaCCs) in various cell types, like diverse smooth muscle cells, epithelial cells and

salivary gland cells^[1].

Ca²⁺-activated Cl⁻ currents^[1] IC₅₀ & Target

Anthracene-9-carboxylic acid causes a voltage-dependent block of outward currents in HEK 293T cells and inhibits a larger In Vitro fraction of the current as depolarization increased [1].

> Anthracene-9-carboxylic acid induces a strong potentiation of tail currents measured at -100 mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics in HEK 293T $^{\left[1\right]}$.

> Anthracene-9-carboxylic acid (500 μM, rabbit pulmonary artery smooth muscle cells) produces a small inhibition of the maximum outward Cl⁻ current at +70 mV (21±10%) but augmented the amplitude of the instantaneous inward relaxation at -80 mV by 321±34%^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Page 1 of 2

REFERENCES

[1]. Cherian OL, Menini A, Boccaccio A. Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel. Biochim Biophys Acta. 2015 Apr;1848(4):1005-13.

[2]. Piper AS, Greenwood IA. Anomalous effect of anthracene-9-carboxylic acid on calcium-activated chloride currents in rabbit pulmonary artery smooth muscle cells. Br J Pharmacol. 2003 Jan;138(1):31-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA