Product Data Sheet

Aminopurvalanol A

Cat. No.: HY-104013

CAS No.: 220792-57-4 Molecular Formula: $C_{19}H_{26}CIN_7O$

Molecular Weight: 403.91

Target: CDK; Apoptosis

Pathway: Cell Cycle/DNA Damage; Apoptosis

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (247.58 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.4758 mL	12.3790 mL	24.7580 mL
	5 mM	0.4952 mL	2.4758 mL	4.9516 mL
	10 mM	0.2476 mL	1.2379 mL	2.4758 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.19 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.19 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Aminopurvalanol A is a potent, selective, and cell permeable inhibitor of Cyclins/Cdk complexes. Aminopurvalanol A preferentially targets the G2/M-phase transition inhibiting cancer cell differentiation. Aminopurvalanol A causes the inhibition of sperm fertilizing ability via the inhibition of physiological capacitation-dependent actin polymerization ^{[1][2]} .
IC ₅₀ & Target	$Cyclins/Cdk^{[1]}$
In Vitro	Aminopurvalanol A (5 and 40 μ M; 8 hours) inhibits cell growth primarily by arresting the cells in the G2 phase of the cell cycle and, at higher concentration, triggering apoptosis ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Cycle Analysis ^[2]

Cell Line:	Human U937 leukemic cells	
Concentration:	5 and 40 μM	
Incubation Time:	8 hours	
Result:	Increased the number of cells with a 4N DNA content as early as 8 h after the beginning of treatment at 5 μ M. 40 μ M led to cellular fragmentation and cells with an irregular DNA distribution, characteristic of apoptotic cell populations.	
Apoptosis Analysis ^[2]		
Cell Line:	Human U937 leukemic cells	
Concentration:	5 and 40 μM	
Incubation Time:	8 hours	
Result:	40 μ M Aminopurvalanol A led to apoptosis rather than after the beginning of treatment a 5 μ M.	

REFERENCES

[1]. Bernabò N, et al. Aminopurvalanol A, a Potent, Selective, and Cell Permeable Inhibitor of Cyclins/Cdk Complexes, Causes the Reduction of in Vitro Fertilizing Ability of Boar Spermatozoa, by Negatively Affecting the Capacitation-Dependent Actin Polymerizat

[2]. Rosania GR, et al. A cyclin-dependent kinase inhibitor inducing cancer cell differentiation: biochemical identification using Xenopus egg extracts. Proc Natl Acad Sci U S A. 1999;96(9):4797-4802.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA