Proteins

Product Data Sheet

Aleglitazar

Cat. No.: HY-14728 CAS No.: 475479-34-6 Molecular Formula: $C_{24}H_{23}NO_{5}S$ Molecular Weight: 437.51 **PPAR** Target:

Pathway: Cell Cycle/DNA Damage; Vitamin D Related/Nuclear Receptor

Storage: Powder -20°C 3 years

In solvent

 $4^{\circ}C$ 2 years -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

DMSO: ≥ 50 mg/mL (114.28 mM) In Vitro

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2857 mL	11.4283 mL	22.8566 mL
	5 mM	0.4571 mL	2.2857 mL	4.5713 mL
	10 mM	0.2286 mL	1.1428 mL	2.2857 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.71 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.71 mM); Clear solution

BIOLOGICAL ACTIVITY

Aleglitazar (R1439) is a potent dual PPAR α/γ agonist, with IC₅₀s of 38 nM and 19 nM for human PPARa and PPAR γ , Description respectively. Aleglitazar can be used for the research of type II diabetes^[1].

IC₅₀ & Target PPARγ PPARα 38 nM (IC₅₀) 19 nM (IC₅₀)

Aleglitazar exhibits species selectivity with respect to PPAR α , with an EC₅₀s of 50 nM, 2.26 μ M and 2.34 μ M for human PPAR α , In Vitro rat PPAR α and mouse PPAR α , respectively^[1].

Aleglitazar (0.01-40 µM; 12-48 hours) does not significantly increase lactate dehydrogenase (LDH) release at concentrations

of 0.1 μ M to 20 μ M, but significant increases LDH release at concentrations of 30 μ M and 40 μ M $^{[2]}$.

Aleglitazar (0.01-20 μ M; 48 hours) decreases hyperglycaemic conditions (HG, glucose 25 mM)-induced apoptosis, caspase-3 activity and cytochrome-C release^[2].

Aleglitazar improves cell viability in cells exposed to hyperglycaemia^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity Assay^[2]

Cell Line:	human cardiomyocytes (HCM), wild-type mice cardiomyocytes (mCM-WT)	
Concentration:	0.01 μΜ, 0.05 μΜ, 0.1 μΜ, 0.5 μΜ, 1 μΜ, 5 μΜ, 10 μΜ, 20 μΜ, 30 μΜ, 40 μΜ	
Incubation Time:	12 hours, 24 hours, 48 hours	
Result:	Increased LDH release at concentrations of 30 μM and 40 $\mu\text{M}.$	

Apoptosis Analysis^[2]

Cell Line:	HCM, mCM-WT	
Concentration:	0.01 μΜ, 0.05 μΜ, 0.1 μΜ, 0.5 μΜ, 1 μΜ, 5 μΜ, 10 μΜ, 20 μΜ	
Incubation Time:	48 hours	
Result:	Dose dependently decreased apoptosis, caspase-3 activity and cytochrome-C release induced by HG.	

In Vivo

Aleglitazar (0.3-3.0 mg/kg; i.p.; daily; for 7 days) exerts beneficial effects on structural and functional outcomes of mild brain ischemia^[3].

Aleglitazar reduces key aspects of microglia activation including NO production, release of proinflammatory cytokines, migration, and phagocytosis^[3].

Aleglitazar attenuates inflammatory responses in post-ischemic brain^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male 129S6/SvEv mice (24-30 g), middle cerebral artery occlusion (MCAo) models ^[3]
Dosage:	0.3 mg/kg, 3.0 mg/kg
Administration:	Intraperitoneal injection, daily, for 7 days
Result:	Reduced the size of the ischemic lesion as assessed using NeuN immunohistochemistry on day 7.

REFERENCES

[1]. Bénardeau A, Benz J, Binggeli A, et al. Aleglitazar, a new, potent, and balanced dual PPARalpha/gamma agonist for the treatment of type II diabetes. Bioorg Med Chem Lett. 2009 May 1;19(9):2468-73.

[2]. Yan Chen, et al. Aleglitazar, a dual peroxisome proliferator-activated receptor-α and -γ agonist, protects cardiomyocytes against the adverse effects of hyperglycaemia. Diab Vasc Dis Res. 2017 Mar; 14(2): 152–162.

[3]. Valérie Boujon, et al. Dual PPARa/y agonist aleglitazar confers stroke protection in a model of mild focal brain ischemia in mice. J Mol Med (Berl). 2019; 97(8): 1127-1138.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com