Proteins

Inhibitors

Alectinib

Cat. No.: HY-13011 CAS No.: 1256580-46-7 Molecular Formula: $C_{30}H_{34}N_4O_2$ Molecular Weight: 482.62

Anaplastic lymphoma kinase (ALK) Target: Pathway: Protein Tyrosine Kinase/RTK

Powder -20°C 3 years 4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

Storage:

DMSO: 2 mg/mL (4.14 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0720 mL	10.3601 mL	20.7202 mL
	5 mM			
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 0.5% CMC-Na/saline water Solubility: 12.5 mg/mL (25.90 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.38 mg/mL (0.79 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.38 mg/mL (0.79 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Alectinib (CH5424802) is a potent, selective, and orally available ALK inhibitor with an IC $_{50}$ of 1.9 nM and a K $_{d}$ value of 2.4 nM (in an ATP-competitive manner), and also inhibits ALK F1174L and ALK R1275Q with IC $_{50}$ s of 1 nM and 3.5 nM, respectively ^[1] . Alectinib demonstrates effective central nervous system (CNS) penetration ^[2] .	
IC ₅₀ & Target	Target IC50: 1.9 nM(ALK), 1 nM (ALK F1174L), 3.5 nM (ALK R1275Q) ^[1] Kd: 2.4 nM (ALK) ^[1]	

In Vitro

Alectinib (0-1000 nM; 2 hours; NCI-H2228 cells) treatment could prevent autophosphorylation of ALK in NCI-H2228 cells expressing EML4-ALK, and it also resulted in substantial suppression of phosphorylation of STAT3 and AKT^[1]. ?Alectinib (0-1000 nM; 5 days; HCC827, A549, or NCIH522 cells) treatment reduces cell activity in a dose-dependent manner [1]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	NCI-H2228 cells	
Concentration:	0 nM,10 nM,100 nM, 1000 nM	
Incubation Time:	2 hours	
Result:	Inhibition of ALK phosphorylation and signal transduction.	

Cell Viability Assay^[1]

Cell Line:	HCC827, A549, or NCIH522 cells	
Concentration:	0-1000 nM	
Incubation Time:	5 days	
Result:	Reduced cell activity in a dose-dependent manner.	

In Vivo

Alectinib (0.2-20 mg/kg; oral administration; once daily; for 11 days; SCID or nude mice bearing NCI-H2228 cells) treatment can result in dose-dependent tumor growth inhibition (EC_{50} of 0.46 mg/kg) and tumor regression. At any dose level, no differences in body weight or gross signs of toxicity are observed^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	SCID or nude mice bearing NCI-H2228 cells ^[1]	
Dosage:	0.2 mg/kg, 0.6 mg/kg, 2 mg/kg, 6 mg/kg, 20 mg/kg	
Administration:	Oral administration; once daily; for 11 days	
Result:	Resulted in dose-dependent tumor growth inhibition (EC $_{\rm 50}$ of 0.46 mg/kg) and tumor regression.	

CUSTOMER VALIDATION

- Science. 2017 Dec 1;358(6367):eaan4368.
- Science. 2014 Oct 3;346(6205):1255784.
- Cell Discov. 2021 May 11;7(1):33.
- Cancer Discov. 2018 Jun;8(6):714-729.
- Cancer Discov. 2016 Oct;6(10):1118-1133.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Sakamoto H, et al. CH5424802, a selective A	NLK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011, 19(5), 679-690.	
[2]. Gadgeel S, et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann Oncol. 2018 Nov 1;29(11):2214-2222.		
	oduct has not been fully validated for medical applications. For research use only.	
Tel: 609-228-	-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA	

Page 3 of 3 www.MedChemExpress.com