Aldosterone

Cat. No.:	HY-113313			
CAS No.:	52-39-1			
Molecular Formula:	C ₂₁ H ₂₈ O ₅			
Molecular Weight:	360.44			
Target:	Endogenous Metabolite			
Pathway:	Metabolic Enzyme/Protease			
Storage:	Powder	-20°C	3 years	
		4°C	2 years	
	In solvent	-80°C	6 months	
		-20°C	1 month	

SOLVENT & SOLUBILITY

DMSO : 100 mg/mL (277.44 mM; Need ultrasonic) Ethanol : 33.33 mg/mL (92.47 mM; Need ultrasonic)										
	Solvent Mass Concentration	1 mg	5 mg	10 mg						
Preparing Stock Solutions	1 mM	2.7744 mL	13.8719 mL	27.7439 mL						
	5 mM	0.5549 mL	2.7744 mL	5.5488 mL						
	10 mM	0.2774 mL	1.3872 mL	2.7744 mL						
Please refer to the solubility information to select the appropriate solvent.										
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution										
 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 4. Add each solvent one by one: 10% EtOH >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 										
						6. Add each solvent o Solubility: ≥ 2.5 mg	ne by one: 10% EtOH >> 90% corr /mL (6.94 mM); Clear solution	ı oil		
							 DMSO : 100 mg/mL (27) Ethanol : 33.33 mg/mL Preparing Stock Solutions Please refer to the solutions Please refer to the solution of Solubility: ≥ 2.5 mg 2. Add each solvent of Solubility: ≥ 2.5 mg 3. Add each solvent of Solubility: ≥ 2.5 mg 4. Add each solvent of Solubility: ≥ 2.5 mg 5. Add each solvent of Solubility: ≥ 2.5 mg 6. Add each solvent of Solubility: ≥ 2.5 mg 6. Add each solvent of Solubility: ≥ 2.5 mg 	DMSO: 100 mg/mL (277.44 mM; Need ultrasonic) Ethanol: 33.33 mg/mL (92.47 mM; Need ultrasonic) Preparing Stock Solutions Stock Solutions 10 mM Please refer to the solubility information to select the app 1. Add each solvent one by one: 10% DMSO >> 40% PEC Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20 Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corr Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 4. Add each solvent one by one: 10% EtOH >> 90% corr Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% (20% Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 6. Add each solvent one by one: 10% EtOH >> 90% (20% Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 6. Add each solvent one by one: 10% EtOH >> 90% corr Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution	DMSO : 100 mg/mL (277.44 mM; Need ultrasonic) Ethanol : 33.33 mg/mL (92.47 mM; Need ultrasonic) Preparing Stock Solutions 1 mM 2.7744 mL 1 mM 2.7744 mL 5 mM 0.5549 mL 10 mM 0.2774 mL Please refer to the solubility information to select the appropriate solvent. 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-8 Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 4. Add each solvent one by one: 10% EtOH >> 40% PEG300 >> 5% Tween-80 Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution 6. Add each solvent one by one: 10% EtOH >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.94 mM); Clear solution	DMSO : 100 mg/mL (277.44 mM; Need ultrasonic) Ethanol : 33.33 mg/mL (92.47 mM; Need ultrasonic) Preparing Stock Solutions Preparing 1 mM 2.7744 mL 13.8719 mL 3.8719 mL 2.7744 mL 13.8719 mL 2.7744 mL 10 mM 0.2774 mL 1.3872 mL Please refer to the solubility information to select the appropriate solvent. 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (6.94 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.94 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (6.94 mM); Clear solution 4. Add each solvent one by one: 10% EtOH >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.94 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.94 mM); Clear solution 6. Add each solvent one by one: 10% EtOH >> 90% corn oil Solubility: 2.5 mg/mL (6.94 mM); Clear solution 6. Add each solvent one by one: 10% EtOH >> 90% corn oil Solubility: 2.5 mg/mL (6.94 mM); Clear solution

BIOLOGICAL ACTIVITY

HO

O

OH

0, 0,

н

Ē

Ē

Description	Aldosterone is the primary mineralocorticoid. Aldosterone is a steroid hormone, and it is synthesized and secreted in response to renin-angiotensin system activation (RAS) or high dietary potassium by the zona glomerulosa (ZG) of the adrenal cortex. Aldosterone activity is dependent by the binding and activation of the cytoplasmic/nuclear mineralocorticoid receptor (MR) at cellular level ^{[1][2]} .				
IC ₅₀ & Target	Human Endogenous Metabolite				
In Vitro	Aldosterone (1-1000 nM; 24 hours) inhibits interleukin-1β-stimulated nitrite production by vascular smooth muscle cells in a dose-dependent manner ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	Aldosterone (1 mg/Kg+1% NaCl; i.h.; once daily for 3 weeks) significantly increases systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP) ^[4] . Aldosterone (0.72 mg/kg/day; 14 days) causes a small increase (14 mmHg) in blood pressure in male mice ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
	Animal Model:	Forty male Wistar rats ^[4]			
	Dosage:	1 mg/Kg (+1% NaCl)			
	Administration:	i.h.; once daily for 3 weeks			
	Result:	Systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP) were significantly higher in aldosterone-salt-treated animals.			

CUSTOMER VALIDATION

- Nat Chem Biol. 2022 Aug 18.
- Acta Pharmacol Sin. 2022 Sep;43(9):2429-2438.
- J Med Chem. 2022 Nov 18.
- Eur J Med Chem. 2022 Apr 20;237:114382.
- Int J Endocrinol. 2021 Jun 18;2021:5575927.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Nanba K, et al. Aging and Adrenal Aldosterone Production. Hypertension. 2018 Feb;71(2):218-223.

[2]. Cannavo A, et al. Aldosterone and Mineralocorticoid Receptor System in Cardiovascular Physiology and Pathophysiology. Oxid Med Cell Longev. 2018 Sep 19;2018:1204598.

[3]. Ikeda U, et al. Aldosterone inhibits nitric oxide synthesis in rat vascular smooth muscle cells induced by interleukin-1 beta. Eur J Pharmacol. 1995 Jul 18;290(2):69-73.

[4]. Martín-Fernández B, et al. Beneficial effects of proanthocyanidins in the cardiac alterations induced by aldosterone in ratheart through mineralocorticoid receptor blockade. PLoS One. 2014 Oct 29;9(10):e111104.

[5]. Dinh QN, et al. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res. 2016 Apr 15;1637:146-153.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA