Proteins

Product Data Sheet

Adenosine 5'-diphosphoribose sodium

Cat. No.: HY-100973A CAS No.: 68414-18-6

Molecular Formula: $C_{15}H_{22}N_5NaO_{14}P_2$

Molecular Weight: 581.3

Target: TRP Channel; Autophagy

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling; Autophagy

-20°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 2 years; -20°C, 1 year (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro H₂O: 125 mg/mL (215.04 mM; Need ultrasonic)

DMSO: 25 mg/mL (43.01 mM; ultrasonic and warming and heat to 80°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7203 mL	8.6014 mL	17.2028 mL
	5 mM	0.3441 mL	1.7203 mL	3.4406 mL
	10 mM	0.1720 mL	0.8601 mL	1.7203 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo 1. Add each solvent one by one: PBS

Solubility: 100 mg/mL (172.03 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description Adenosine 5'-diphosphoribose sodium (ADP ribose sodium) is a nicotinamide adenine nucleotide (NAD+) metabolite.

Adenosine 5'-diphosphoribose sodium is the most potent and primary intracellular Ca²⁺-permeable cation TRPM2 channel

activator. Adenosine 5'-diphosphoribose sodium also can enhance autophagy $^{[1][2]}$.

IC₅₀ & Target TRPM2 channel^{[1][2]}

Autophagy^[1]

In Vitro In mouse embryonic fibroblasts (MEFs), H_2O_2 treatment demonstrates that the activation of poly(ADP-ribose) (PAR)

> polymerase-1 (PARP-1) produced Adenosine 5'-diphosphoribose (ADP ribose), which is an activating signal for TRPM2 channels, thereby promoting Ca²⁺ elevation through extracellular Ca²⁺ influx and (or) lysosomal Ca²⁺ release. This process

eventually activates early or late autophagy in response to different degrees of oxidative stress^{[1][1]}.

?TRPM2 channels are activated by binding of Adenosine 5'-diphosphoribose (ADP ribose) to the intracellular NUDT9homology (NUDT9-H) domain unique to TRPM2 and located at its C terminus. In addition to ADPR, intracellular Ca²⁺ is an

essential coactivator: TRPM2 channels open only in the combined presence of both ligands $\[2\]$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Zhang DX, et al. The potential regulatory roles of NAD(+) and its metabolism in autophagy. Metabolism. 2016 Apr;65(4):454-62.

[2]. Tóth B, et al. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13440-5.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com