

Product Data Sheet

Adaptaquin

Cat. No.: HY-101449 CAS No.: 385786-48-1 Molecular Formula: $C_{21}H_{16}CIN_3O_2$ Molecular Weight: 377.82

Target: HIF/HIF Prolyl-Hydroxylase

Pathway: Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years

 4°C 2 years In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (264.68 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6468 mL	13.2338 mL	26.4676 mL
	5 mM	0.5294 mL	2.6468 mL	5.2935 mL
	10 mM	0.2647 mL	1.3234 mL	2.6468 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Adaptaquin is an inhibitor of hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PHD2), with an IC ₅₀ of 2 μ M. Adaptaquin can inhibit lipid peroxidation and maintain mitochondrial function ^{[1][2]} .
IC ₅₀ & Target	IC50: 2 μM (HIF-PHD2) ^[1]

REFERENCES

[1]. Smirnova NA, et, al. Utilization of an in vivo reporter for high throughput identification of branched small molecule regulators of hypoxic adaptation. Chem Biol. 2010 Apr 23;17(4):380-91.

[2]. Neitemeier S, et, al. Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death Dis. 2016 May 5;7(5):e2214.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com