Proteins

Product Data Sheet

Acoramidis hydrochloride

Cat. No.: HY-109165A CAS No.: 2242751-53-5 Molecular Formula: $C_{15}H_{18}ClFN_2O_3$

Target: Transthyretin (TTR) Pathway: **Neuronal Signaling**

328.77

-20°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

Molecular Weight:

DMSO: 62.5 mg/mL (190.10 mM; Need ultrasonic)

H₂O: < 0.1 mg/mL (ultrasonic; warming; heat to 60°C) (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0416 mL	15.2082 mL	30.4164 mL
	5 mM	0.6083 mL	3.0416 mL	6.0833 mL
	10 mM	0.3042 mL	1.5208 mL	3.0416 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.33 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.33 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.33 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Acoramidis (AG10) hydrochloride is an orally active and selective kinetic stabilizer of WT and V122I-TTR (transthyretin)		
	Acoramidis (AG10) hydrochloride is used in the study for transthyretin amyloidosis $^{[1][2]}$.		

In Vitro

Acoramidis (AG10, $0.1-10 \mu M$ for TTR -5 μM) stabilizes V122I- and WT-TTR equally well and also exceeds their efficacy to stabilize WT and mutant TTR in whole serum^[1].

Acoramidis (AG10) stimulates the mitochondrial QO2 in a concentration-dependent manner between 10 and 100 μM^[3]. Acoramidis (AG10) has very minimal inhibition of two common off-targets in drug discovery, the potassium ion channel hERG (IC₅₀ > 100 μ M) and a number of cytochrome P450 isozymes (IC₅₀ > 50 μ M) (low toxicity)^[1].

MCE has not independed Western Blot Analysis ^[1]	ntly confirmed the accuracy of these methods. They are for reference only.		
Cell Line:	Human serum (TTR ⊠5 μM).		
Concentration:	0.1 and 10 μM.		
Incubation Time:	72 h.		
Result:	Was significantly more effective than tafamidis in stabilizing TTR. The concentration of AG10 to 10 μM resulted in stabilization of almost all of TTR in serum.		

REFERENCES

- [1]. Sravan C Penchala, et al. AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9992-7.
- [2]. Jonathan C Fox, et al. First-in-Human Study of AG10, a Novel, Oral, Specific, Selective, and Potent Transthyretin Stabilizer for the Treatment of Transthyretin Amyloidosis: A Phase 1 Safety, Tolerability, Pharmacokinetic, and Pharmacodynamic Study in Healthy Adult Volunteers. Clin Pharmacol Drug Dev. 2020 Jan;9(1):115-129.
- [3]. Stephen P Soltoff, et al. Evidence that tyrphostins AG10 and AG18 are mitochondrial uncouplers that alter phosphorylation-dependent cell signaling. J Biol Chem. 2004 Mar 19;279(12):10910-8.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA