MedChemExpress

AZD-3161

Cat. No.:	$\mathrm{HY}-117714$
CAS No.:	$1369501-46-1$
Molecular Formula:	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$
Molecular Weight:	474.43
Target:	Sodium Channel
Pathway:	Membrane Transporter/Ion Channel
Storage:	Please store the product under the recommended conditions in the Certificate of
	Analysis.

 Analysis.

BIOLOGICAL ACTIVITY

Description
IC_{50} \& Target \quad pIC50: 7.1 (NaV 1.7 channel $)^{[1]}$

In Vitro

In Vivo neuropathic and inflammatory pain ${ }^{[1][2]}$. respectively ${ }^{[1]}$.

AZD-3161 is a potent and selective blocker of Nav1.7 channel, with a pIC_{50} of 7.1. AZD-3161 can be used for the research of

AZD-3161 (compound 29) is selective for $\mathrm{Na}_{\mathrm{v}} 1.7$ over $\mathrm{Na}_{\mathrm{v}} 1.5$ and hERG, with $\mathrm{plC}_{50} \mathrm{~s}$ of $7.1,4.9$ and 4.9, respectively ${ }^{[1]}$.
AZD-3161 inhibits Adenosine Transporter (AT) and Cannabinoid B1 (CB1) receptor, with IC 50 of $1.8 \mu \mathrm{M}$ and $5 \mu \mathrm{M}$,

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

AZD-3161 (16-99 $\mu \mathrm{mol} / \mathrm{kg}$; p.o.) displays a dose dependent antinociceptive effect in the phase 1 of the formalin model of pain in rats ${ }^{[1]}$.
AZD-3161 ($3 \mu \mathrm{~mol} / \mathrm{kg}$; i.v.) exhibits long half-life (2.2 h) and $\mathrm{V}_{\text {SS }}(4.2 \mathrm{~L} / \mathrm{kg})^{[1]}$.
AZD-3161 (10 $\mu \mathrm{mol} / \mathrm{kg}$; p.o.) exhibits high oral bioavailability (44\%), long half-life (4.8 h) and $\mathrm{C}_{\max }(0.30 \mu \mathrm{~mol} / \mathrm{L}){ }^{[1]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Kers I, et, al. Structure and activity relationship in the (S)-N-chroman-3-ylcarboxamide series of voltage-gated sodium channel blockers. Bioorg Med Chem Lett. 2012 Sep 1; 22(17): 5618-24.
[2]. Bagal SK, et, al. Recent progress in sodium channel modulators for pain. Bioorg Med Chem Lett. 2014 Aug 15; 24(16): 3690-9

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail:tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

