AZ10606120 dihydrochloride

Cat. No.:	HY-108669	
CAS No.:	607378-18-7	
Molecular Formula:	$C_{25}H_{36}Cl_2N_4O_2$	X X NH
Molecular Weight:	495.48	н
Target:	P2X Receptor	[™] N [™] N [™] OH
Pathway:	Membrane Transporter/Ion Channel	H-CI H-CI
Storage:	4°C, sealed storage, away from moisture	
	* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

In Vitro

Preparing Stock Solutions	Mass Solvent Concentration	1 mg	5 mg	10 mg
	1 mM	2.0182 mL	10.0912 mL	20.1824 ml
	5 mM	0.4036 mL	2.0182 mL	4.0365 mL

to the solubility information to select the appropriate solvent. **BIOLOGICAL ACTIVITY** Description AZ10606120 dihydrochloride is a selective, high affinity antagonist for P2X7 receptor (P2X7R) at human and rat with an IC₅₀ of about 10 nM. AZ10606120 dihydrochloride is little or no effect at other P2XR subtypes. AZ10606120 dihydrochloride has anti-depressant effects and reduces tumour growth^[1]. IC₅₀ & Target P2X7 Receptor In Vitro AZ10606120 (1-100 µM, 72 h) dihydrochloride depletes tumour cells in patient-derived primary glioblastoma samples^[2]. AZ10606120 (1-100 µM, 72 h) dihydrochloride increases Lactate dehydrogenase (LDH) levels in human primary glioblastoma cultures^[2]. AZ10606120 (10 μM) dihydrochloride reduces proliferation (60 h), cell migration (1 h) and invasion (24 h) in PDAC cell lines^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. In Vivo AZ10606120 (100 µg/kg, i.p., every 2 days for additional 15 days) dihydrochloride reverses Streptozotocin (HY-13753)induced VEGF and IL-6 expression in the retinae of rats^[4]. AZ10606120 (2 mg/kg i.p.) dihydrochloride shows an antidepressant phenotype in LPS-induced anhedonia mice^[5]. AZ10606120 (5 mg/kg, i.m.) dihydrochloride and DNR (0.75 mg/kg, i.m.) combined administration is more effective in

reducing HL-60 tumor growth in nude mice in comparison to their single administration ^[6] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
Animal Model:	LPS-induced anhedonia mice ^[5]	
Dosage:	2 mg/kg	
Administration:	i.p., pretreated at 30 min before LPS injection	
Result:	Restored the decline in sucrose consumption, indicated by an sucrose preference test (SPT).	

CUSTOMER VALIDATION

• Int J Med Microbiol. 18 October 2022, 151571.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Kan LK, et al. P2X7 receptor antagonism by AZ10606120 significantly reduced in vitro tumour growth in human glioblastoma. Sci Rep. 2023 May 24;13(1):8435.

[2]. Giannuzzo A, et al. The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer. 2015 Nov 25;14:203.

[3]. Clapp C, et al. Pharmacological blockade of the P2X7 receptor reverses retinal damage in a rat model of type 1 diabetes. Acta Diabetol. 2019 Sep;56(9):1031-1036.

[4]. Csölle C, et al. Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors. PLoS One. 2013 Jun 21;8(6):e66547.

[5]. Pegoraro A, et al. Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression. Cell Death Dis. 2020 Oct 18;11(10):876.

[6]. Allsopp RC, et al. Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci Rep. 2017 Apr 7;7(1):725.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA