Proteins ## ATR-IN-20 Cat. No.: HY-151915 Molecular Formula: $C_{29}H_{31}N_5O_4S$ Molecular Weight: 545.65 ATM/ATR; mTOR Target: Pathway: Cell Cycle/DNA Damage; PI3K/Akt/mTOR Storage: Please store the product under the recommended conditions in the Certificate of Analysis. **Product** Data Sheet ## **BIOLOGICAL ACTIVITY** Description ATR-IN-20 is a potent ATR (ATM/ATR) inhibitor with an IC₅₀ of 3 nM. ATR-IN-20 possess an inhibitory effect on mTOR (IC₅₀ of 18 nM) while displaying good selectivity against PI3Kα (100 nM), ATM (100 nM), and DNA-PK (662 nM). ATR-IN-20 exhibits excellent pharmacokinetic profile (F = 30%), and has anticancer effects $^{[1]}$. IC₅₀ & Target ATR mTOR ATM ΡΙ3Κα > 3 nM (IC₅₀) 18 nM (IC₅₀) 100 nM (IC₅₀) 100 nM (IC₅₀) DNA-PK 662 nM (IC₅₀) In Vitro ATR-IN-20 (compound 48f; 0.03-3 µM; 24 hours) significantly inhibits migrating in a concentration-dependent manner in LoVo cells^[1]. ATR-IN-20 (compound 48f) displays strong monotherapy efficacy in ATM kinase-deficient tumor cells LoVo, SW620, OVCAR-3 cell lines with IC50 values of 0.040 μ M, 0.095 μ M, 0.098 μ M, respectively^[1]. ATR-IN-20 (compound 48f; 0.03-3 μM) decreases the colony-forming ability in a dose-dependent manner in LoVo cells^[1]. ATR-IN-20 (compound 48f) shows no significant inhibition against CYP1A2, CYP2C9, and CYP2D6. However, ATR-IN-20 exhibits a weak inhibitory potency against CYP2C19 and CYP3A4 with IC₅₀ values of 1 μ M^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Migration Assay [1] | Cell Line: | LoVo cells | |------------------|--| | Concentration: | 0.03 μΜ, 0.1 μΜ, 0.3 μΜ, 1 μΜ, 3 μΜ | | Incubation Time: | 24 hours | | Result: | Significantly inhibited migrating in a concentration-dependent manner. | In Vivo ATR-IN-20 (compound 48f) shows a favorable pharmacokinetic profile with a bioavailability of 30.0% in SD rats, acceptable plasma protein binding (PPB), high permeability, and low risk of drug-drug interactions^[1]. Mean values of pharmacokinetic parameters of ATR-IN-20 (compound 48f) after an i.v. at 1 mg/kg in Sprague-Dawley Rats^[1]. | Parameters | ATR-IN-20 (compound 48f) | |---|--------------------------| | T _{1/2} (h) | 1.32 | | MRT _{0-inf} (h) | 1.45 | | MRT _{0-t} (h) | 1.36 | | AUC _{0-inf} (ng·h·mL ⁻¹) | 1170 | | AUC _{0-t} (ng·h·mL ⁻¹) | 1160 | | $CL (mL\cdot kg^{-1}\cdot min^{-1})$ | 14.2 | | Vdss (L·kg ^{−1}) | 1.24 | | | | MCE has not independently confirmed the accuracy of these methods. They are for reference only. ## **REFERENCES** [1]. Yinliang Qi, et al. Discovery of novel 7,7-dimethyl-6,7-dihydro-5H-pyrrolo[3,4-d]pyrimidines as ATR inhibitors based on structure-based drug design. Eur J Med Chem. 2022 Nov 26;246:114945. $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$ Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA