ASM-IN-1

®

MedChemExpress

Cat. No.:	HY-149120	
CAS No.:	2913151-46-7	Br
Molecular Formula:	C ₁₆ H ₁₂ BrN ₃ O ₄	
Molecular Weight:	390.19	N,
Target:	Phospholipase	N=
Pathway:	Metabolic Enzyme/Protease)⊨O HN
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	ОН

1 reduces 1 shows			
ASM-IN-1 (compound 4i) (0-20 μM) dose not affect cell growth in HUVECs ^[1] . ASM-IN-1 (0, 1, 5 μM) reduces the expressions of IL-6 and TNF-α with LPS stimulated in a dose-dependent manner, decreases the expression of MCP-1 mRNA in HUVECs ^[1] . ASM-IN-1 (5 μM) reduces Ox-LDL-stimulated MCP-1 mRNA expression and restore IL-6 mRNA to a normal level ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Cytotoxicity Assay ^[1]			
UVECs			
0.5, 1, 5, 10, 20 μΜ			
24, 48 h			
ty of			
.y			

AUC _{0-t} (h∙ng/mL)	227 ± 14.3	805 ± 76.7	
AUC _{0-∞} (h∙ng/mL)	228 ± 15.1	809 ± 75.1	
V _z (mL/kg)	1277 ± 216		
CL (mL/h/kg)	4390 ± 291		
MRT _{0-t} (h)	0.077 ± 0.012	0.32 ± 0.078	
MRT _{0-∞} (h)	0.087 ± 0.019	0.35 ± 0.064	
F (%)		35.42 ± 0.033%	

ICR mice, 1 mg/kg iv ; 10 mg/kg po^[1]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Yang K, et al. Discovery of Novel N-Hydroxy-1,2,4-oxadiazole-5-formamides as ASM Direct Inhibitors for the Treatment of Atherosclerosis. J Med Chem. 2023 Feb 23;66(4):2681-2698.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA