Proteins

Product Data Sheet

AS1269574

Cat. No.: HY-107535 CAS No.: 330981-72-1 Molecular Formula: $C_{13}H_{14}BrN_3O$ Molecular Weight: 308.17

Target: GPR119; TRP Channel

Pathway: GPCR/G Protein; Neuronal Signaling; Membrane Transporter/Ion Channel

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (811.24 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.2450 mL	16.2248 mL	32.4496 mL
	5 mM	0.6490 mL	3.2450 mL	6.4899 mL
	10 mM	0.3245 mL	1.6225 mL	3.2450 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.75 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.75 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.75 mM); Clear solution

BIOLOGICAL ACTIVITY

Description $AS1269574\ is\ a\ potent,\ orally\ available\ GPR119\ agonist,\ with\ an\ EC_{50}\ of\ 2.5\ \mu M\ in\ HEK293\ cells\ expressing\ human\ GPR119.$

> AS1269574 activates TRPA1 cation channels to stimulate glucagon-like peptide-1 (GLP-1) secretion. AS1269574 specifically induces glucose-dependent insulin secretion from pancreatic β-cells only under high-glucose conditions. AS1269574 has the

potential for the research of type 2 diabetes^{[1][2]}.

GPR119 IC₅₀ & Target TRPA1

In Vivo AS1269574 sgnificantly reduced the blood glucose AUC after 2 h (AUC_{0-2h}) of administration^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Eight-week-old ICR mice ^[1]	
Dosage:	100 mg/kg	
Administration:	P.o.	
Result:	Sgnificantly reduced the blood glucose AUC after 2 h (AUC _{0-2h}) of administration. Similarly, plasma insulin AUC _{0-2h} was significantly higher in the mice.	

REFERENCES

[1]. Yoshida S, et al. Identification of a novel GPR119 agonist, AS1269574, with in vitro and in vivo glucose-stimulated insulin secretion. Biochem Biophys Res Commun. 2010;400(3):437-441.

[2]. Chepurny OG, et al. GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion. Mol Endocrinol. 2016;30(6):614-629.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA