AQX-435

Cat. No.: HY-136268 CAS No.: 1619983-52-6

Molecular Formula: $C_{27}H_{34}N_{2}O_{4}$ 450.57 Molecular Weight:

Target: Phosphatase; Apoptosis

Pathway: Metabolic Enzyme/Protease; Apoptosis

-20°C Storage: Powder 3 years

> 4°C 2 years

-80°C In solvent 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (221.94 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2194 mL	11.0971 mL	22.1941 mL
	5 mM	0.4439 mL	2.2194 mL	4.4388 mL
	10 mM	0.2219 mL	1.1097 mL	2.2194 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (5.55 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (5.55 mM); Clear solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (5.55 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

AQX-435 is a potent SHIP1 phosphatase activator. AQX-435 reduces PI3K activation downstream of the B-cell receptor (BCR) and induces apoptosis of malignant B cells, and reduces lymphoma growth^{[1][2]}.

In Vitro

AQX-435 reduces CLL cell viability in a dose-dependent manner^[1].

AQX-435-induced (5-30 μM; 24 hours) apoptosis is mediated via caspases since AQX435 induced PARP cleavage^[1]. AQX-435 effectively inhibits PI(3,4,5)P3-mediated signaling downstream of the BCR in CLL and DLBCL cells^[1]. AQX-435 and Ibrutinib combine effectively to enhanced inhibition of BCR signaling. AQX-435 induced TMD8 cell apoptosis in vitro with an IC_{50} of ~2 μ M. AQX-435 reduces anti-IgM-induced AKT phosphorylation and induces apoptosis in DLBCL cells^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay^[1]

Cell Line:	Chronic lymphocytic leukemia (CLL) cells	
Concentration:	5-30 μΜ	
Incubation Time:	24 hours	
Result:	Reduced CLL cell viability in a dose-dependent manner.	

In Vivo

AQX-435 (10 mg/kg; i.p.; 5 days) significantly reduced the volume of TMD8 tumors $^{[1]}$.

AQX-435 (50 mg/kg; ip) inhibits DLBCL PDX tumors growth^[1].

AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	NOD.Cg-Prkdc scidIl2rgtm1Wjl/SzJ mice (NSG mice) (TMD8 tumors) ^[1]	
Dosage:	10 mg/kg	
Administration:	I.p.; in 7-day cycles each comprising 5 days of AQX-435 followed by 2 days with no drug	
Result:	Reduced the volume of TMD8 tumors.	

REFERENCES

[1]. Lyoyd F. MACKENZIE, et al. Ship1 modulators and methods related thereto.WO2014110036A1.

[2]. Lemm EA, et al. Preclinical Evaluation of a Novel SHIP1 Phosphatase Activator for Inhibition of PI3K Signaling in Malignant B Cells. Clin Cancer Res. 2020;26(7):1700-1711.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA