Product Data Sheet

AP14145 hydrochloride

Cat. No.: HY-120355A CAS No.: 2387505-59-9 Molecular Formula: $\mathsf{C}_{18}\mathsf{H}_{18}\mathsf{ClF}_3\mathsf{N}_4\mathsf{O}$

Molecular Weight: 398.81

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

H-CI

BIOLOGICAL ACTIVITY

Description	AP14145 hydrochloride is a potent $K_{Ca}2$ (SK) channel negative allosteric modulator with an IC_{50} of 1.1 μ M for $K_{Ca}2.2$ (SK2) and $K_{Ca}2.3$ (SK3) channels. AP14145 hydrochloride inhibition strongly depends on two amino acids, S508 and A533 in the channel. AP14145 hydrochloride prolonged atrial effective refractory period (AERP) in rats and demonstrates antiarrhythmic effects in a Vernakalant-resistant porcine model of atrial fibrillation (AF) ^{[1][2]} .
IC ₅₀ & Target	IC50: 1.1 μ M (K _{Ca} 2.2) and 1.1 μ M (K _{Ca} 2.3) ^[1]
In Vitro	AP14145 (10 nM-30 μ M) inhibits both hK _{Ca} 2.2 and hK _{Ca} 2.3 channel currents in a concentration dependent fashion. AP14145 (10 μ M) inhibits 50% of the hK _{Ca} 1.1 current, 90% of the hK _{Ca} 2.1 current and has no effect on hK _{Ca} 3.1 channel. AP14145 (10 μ M) increases the EC ₅₀ of Ca ²⁺ on K _{Ca} 2.3 channels from 0.36 to 1.2 μ M ^[1] . AP14145 hydrochloride demonstrates an IC ₅₀ in whole-cell patch clamp on the human SK3 channel of 1.3 μ M. AP14145 inhibits hERG (K _V 11.1) with an IC ₅₀ of 71.8 μ M and K _{ir} 3.1/K _{ir} 3.4 (I _{KACh}) with an IC ₅₀ of 9.3 μ M and does not produce any significant effects on K _V 1.5 (I _{Kur}), K _V 7.1/KCNE1 (I _{Ks}), K _V 4.3/KChiP2 (I _{to}), and K _{ir} 2.1 (I _{K1}) in 30 μ M or on Na _V 1.5 (15 μ M; I _{Na}) on a panel of cardiac ion channels. AP14145 (1-10 μ M) produces no significant block of Ca _V 1.2 ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	AP14145 (10 μ M) increases the duration of the atrial effective refractory period (AERP) in isolated perfused rat hearts ^[1] . AP14145 (2.5 and 5 mg/kg; bolus injections (iv)) increases the duration of the atrial effective refractory period in male sprague-dawley rats (250-350 g, 1-3 months old) ^[1] . AP14145 (5 mg/kg; bolus injections) has a C_{max} of 8355 nmol/L, a $t_{1/2}$ of 24.3 minutes in landrace pigs (12-13 weeks old, 30-35 kg gilts) ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Rafel Simó-Vicens, et al. A New Negative Allosteric Modulator, AP14145, for the Study of Small Conductance Calcium-Activated Potassium (K_{Ca}2) Channels. Br J Pharmacol. 2017 Dec;174(23):4396-4408.

[2]. Jonas Goldin Diness, et al. Termination of Vernakalant-Resistant Atrial Fibrillation by Inhibition of Small-Conductance Ca²⁺-Activated K + Channels in Pigs. Circ Arrhythm Electrophysiol. 2017 Oct;10(10):e005125.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com