Product Data Sheet

AMG 837 hemicalcium

Cat. No.: HY-129707

Molecular Formula: $C_{26}H_{21}F_3O_3.1/2Ca$

Molecular Weight: 457.48 GPR40 Target:

CAS No.:

Pathway: GPCR/G Protein

Please store the product under the recommended conditions in the Certificate of Storage:

1291087-14-3

BIOLOGICAL ACTIVITY

Description AMG 837 hemicalcium is a potent, orally bioavailable and partial agonist of GPR40/FFA1. AMG 837 hemicalcium inhibits specific [3H]AMG 837 binding at the human FFA1 receptor with a pIC₅₀ of 8.13. AMG 837 hemicalcium could enhance insulin secretion and lower glucose levels in rodents^{[1][2][3]}.

IC₅₀ & Target pIC50: 8.13 (FFA1)[3]

AMG 837 (1 nM-10 μ M) stimulates insulin secretion in a glucose-dependent manner with an EC₅₀ of 142 \pm 20 nM on islets In Vitro isolated from $mice^{[1]}$.

> AMG 837 stimulates Ca^{2+} flux with the EC₅₀s of 13.5, 22.6 and 31.7 nM for human, mouse and rat receptors in CHO cells, respectively[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo AMG 837 (0.03-0.3 mg/kg; a single p.o.) improves glucose tolerance and enhances insulin secretion in Sprague-Dawley rats $^{[1]}$

> AMG 837 (0.03-0.3 mg/kg; p.o. once daily for 21 days) reduces glucose levels and increases insulin levels following glucose challenge in vivo^[1].

AMG 837 (0.5 mg/kg; p.o.) displays excellent oral bioavailability (F = 84%) and a total plasma C_{max} of 1.4 μ M^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	8-week old Zucker Fatty Rats $^{[1]}$	
Dosage:	0.03, 0.1, 0.3 mg/kg	
Administration:	Oral gavage once daily for 21 days	
Result:	Decreased glucose AUC values during the glucose tolerance test (GTT) to 7%, 15%, and 25% at 0.03, 0.1 and 0.3 mg/kg, respectively. Increased insulin levels in the mid- and high-dose groups. Not affected body weights during the 21-day treatment.	
Animal Model:	8-week old Sprague-Dawley rats ^[1]	

Dosage:	0.03, 0.1, 0.3 mg/kg
Administration:	A single p.o. administration
Result:	Reduced the post-prandial glucose with the half-maximal dose of 0.05 mg/kg.

REFERENCES

- [1]. Daniel CHL, et, al. AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS One. 2011; 6(11): e27270.
- [2]. Houze JB, et, al. AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett. 2012 Jan 15; 22(2): 1267-70.
- [3]. Daniel CHL, et, al. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol. 2012 Nov;82(5):843-59.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA