Screening Libraries

Inhibitors

Product Data Sheet

AMG-548 dihydrochloride

Cat. No.: HY-108642B CAS No.: 2518299-32-4 Molecular Formula: $C_{29}H_{29}Cl_2N_5O$ Molecular Weight: 534.48

Target: p38 MAPK; Casein Kinase

Pathway: MAPK/ERK Pathway; Cell Cycle/DNA Damage; Stem Cell/Wnt

Storage: -20°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 10 mg/mL (18.71 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8710 mL	9.3549 mL	18.7098 mL
	5 mM	0.3742 mL	1.8710 mL	3.7420 mL
	10 mM	0.1871 mL	0.9355 mL	1.8710 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1 mg/mL (1.87 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1 mg/mL (1.87 mM); Clear solution

BIOLOGICAL ACTIVITY

Description AMG-548 dihydrochloride, an orally active and selective p38 α inhibitor (K_i=0.5 nM), shows slightly selective over p38 β (K_i=36 nM) and >1000 fold selective against p38γ and p38δ. AMG-548 dihydrochloride is also extremely potent in the inhibition of

whole blood LPS stimulated TNF α (IC₅₀=3 nM)^[1]. AMG-548 dihydrochloride inhibits Wnt signaling by directly inhibiting

	Casein kinase 1 isolorius o and e			
IC ₅₀ & Target	p38α 0.5 nM (Ki)	p38β 3.6 nM (Ki)	p38δ 2600 nM (Ki)	p38γ 4100 nM (Ki)
	dog p38α 5.0 nM (Ki)	JNK 1 11480 nM (Ki)	JNK 2 39 nM (Ki)	JNK 3 61 nM (Ki)
	CK1			

In Vitro	AMG-548 dihydrochloride shows >1000 fold selective against p38 γ (K_i =2600 nM) and p38 δ (k_i =4100 nM). AMG-548 dihydrochloride has an modest selectivity against JNK2 (k_i =39 nM) and JNK3 (k_i =61 nM). AMG-548 dihydrochloride is also extremely potent in the inhibition of whole blood LPS stimulated TNFa (IC $_{50}$ =3 nM) and IL1b (IC $_{50}$ =7 nM) as well as TNFa induced IL-8 (IC $_{50}$ =0.7 nM) and IL-1b induced IL-6 (IC $_{50}$ =1.3 nM) in human whole blood [1]. AMG-548 dihydrochloride (10 μ M) inhibits the hDvl2 shift [2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	AMG-548 dihydrochloride has rat F of 62% and dog F of 47%. The $t_{1/2}$ is 4.6 hours in rats and 7.3 hours in dogs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Lee MR, et al. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alphaprotein. Curr Med Chem. 2005;12(25):2979-94.

[2]. Verkaar F, et al. Inhibition of Wnt/ β -catenin signaling by p38 MAP kinase inhibitors is explained by cross-reactivity with casein kinase I δ / ϵ . Chem Biol. 2011 Apr 22;18(4):485-94.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA