MCE MedChemExpress

Product Data Sheet

AKB-6899

Cat. No.: HY-113649

CAS No.: 1007377-55-0

Molecular Formula: C₁₄H₁₁FN₂O₄

Molecular Weight: 290.25

Target: HIF/HIF Prolyl-Hydroxylase

Pathway: Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years

 $\begin{array}{ccc} & 4^{\circ}\text{C} & 2 \text{ years} \\ \text{In solvent} & -80^{\circ}\text{C} & 6 \text{ months} \\ & -20^{\circ}\text{C} & 1 \text{ month} \end{array}$

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (344.53 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.4453 mL	17.2265 mL	34.4531 mL
	5 mM	0.6891 mL	3.4453 mL	6.8906 mL
	10 mM	0.3445 mL	1.7227 mL	3.4453 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.61 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (8.61 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.61 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

AKB-6899, a prolyl hydroxylase domain 3 (PHD3) inhibitor, is a selective HIF-2 α stabilizer. AKB-6899 also increases soluble form of the VEGF receptor (sVEGFR-1) production from GM-CSF-treated macrophages, and has antitumor and antiangiogenic effects^[1].

In Vitro

AKB-6899 (10 μ M; 24 hours) increases the leves of HIF-2 α protein, with no corresponding increase in HIF-1 α . AKB-6899 also increases soluble form of the VEGF receptor (sVEGFR-1) production from GM-CSF-treated macrophages, with no effect on HIF-1 α accumulation or VEGF production [1].

Western Blot Analysis ^[1]		
Cell Line:	Murine bone marrow-derived macrophages	
Concentration:	10 μΜ	
Incubation Time:	24 hours	
Result:	Observed an increase in HIF-2α protein in cells.	

In Vivo

AKB-6899 (17.5 mg/kg; i.p.; 3 times per week; for 16 days) treatment significantly reduces tumor growth in a murine melanoma model $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	6-8-week-old C57BL/6 mice injected with B16F10 murine melanoma cells ^[1]	
Dosage:	17.5 mg/kg	
Dosage.	17.5 Hig/kg	
Administration:	i.p.; 3 times per week; for 16 days	
Result:	Significantly reduced tumor growth.	

REFERENCES

[1]. Julie M Roda, et al. Stabilization of HIF- 2α induces sVEGFR-1 production from tumor-associated macrophages and decreases tumor growth in a murine melanoma model. J Immunol. 2012 Sep 15;189(6):3168-77.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA