Proteins

Product Data Sheet

Cat. No.: HY-13058 CAS No.: 851881-60-2 Molecular Formula: $C_{20}H_{17}F_{2}N_{3}O_{2}$ Molecular Weight: 369.36

Target: mGluR

Pathway: GPCR/G Protein; Neuronal Signaling

-20°C Storage: Powder 3 years

 $4^{\circ}C$ 2 years

In solvent -80°C 2 years

> -20°C 1 year

.	0-N	
F	N	

SOLVENT & SOLUBILITY

In Vitro Methanol: 105.5 mg/mL (285.63 mM; Need ultrasonic and warming)

DMSO: $\geq 31 \text{ mg/mL} (83.93 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7074 mL	13.5369 mL	27.0739 mL
	5 mM	0.5415 mL	2.7074 mL	5.4148 mL
	10 mM	0.2707 mL	1.3537 mL	2.7074 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description ADX-47273 is a potent, selective and brain-penetrant mGluR5 positive allosteric modulator (PAM), with an EC₅₀ of 0.17 µM for potentiation of glutamate (50 nM) response. ADX-47273 has antipsychotic and procognitive activities [1][2].

mGluR5 IC₅₀ & Target 0.17 μM (EC50)

In Vitro ADX-47273 (0.1 nM-10 µM; 5 min) causes a concentration-dependent increase in the response to 50 nM glutamate in HEK 293 cells expressing rat mGlu5 without eliciting a response by itself^[1].

ADX-47273 (0.1 nM-10 μM; 5 min) causes a concentration-dependent increase in the response to 300 nM glutamate in primary astrocyte cultures, with an EC₅₀ of 0.23 μ M^[1].

ADX47273 (0.01-10 μ M; 60 min) inhibits [3 H]MPEP binding to rat mGlu5 receptor HEK cell membranes, with a K_i of 4.3 μ M[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Page 1 of 2

In Vivo

ADX47273 (1-10 mg/kg; a single i.p.) dose-dependently increases ERK and CREB phosphorylation in rat hippocampus and prefrontal $cortex^{[1]}$.

ADX47273 (10-100 mg/kg; a single i.p.) decreases conditioned avoidance responding in a dose-dependent manner in rats^[1]. ADX47273 (10-300 mg/kg; i.p.) blocks apomorphine-induced climbing in mice^[1].

ADX47273 (0.1-50 mg/kg; i.p.) increases novel object recognition and reduces impulsivity in the five-choice serial reaction time test in rats^[1].

ADX47273 (15 mg/kg; i.p.) enhances reversal learning in the Morris Water Maze (MWM) in mice [3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Long-Evans rats ^[1]
Dosage:	1, 10 mg/kg
Administration:	A single i.p.
Result:	Increased ERK and CREB phosphorylation in both the prefrontal cortex and hippocampus.

CUSTOMER VALIDATION

• Biological Sciences. 2020 Sep.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Liu F, et al. ADX47273 [S-(4-fluoro-phenyl)-[3-[3-(4-fluoro-phenyl)-[1,2,4]-oxadiazol-5-yl]-piperidin-1-yl}-methanone]: a novel metabotropic glutamate receptor 5-selective positive allosteric modulator with preclinical antipsychotic-like and procognitive

[2]. Xu J, et al. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning. Learn Mem. 2013 Jul 18;20(8):438-45.

[3]. Schlumberger C, et, al. Effects of a positive allosteric modulator of mGluR5 ADX47273 on conditioned avoidance response and PCP-induced hyperlocomotion in the rat as models for schizophrenia. Pharmacol Biochem Behav. 2010 Mar;95(1):23-30.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA