AAK1-IN-3

BIOLOGICAL ACTIVITY		
Description	AAK1-IN-3, a quinoline analogue, is a brain-penetrant adaptor protein 2-associated kinase 1 (AAK1) inhibitor with an IC ₅₀ of 11 nM. AAK1-IN-3 has the potential for neuropathic pain research ^[1] .	
In Vitro	AAK1-IN-3 (compound (R)-31) is brain-penetrant kinase inhibitors with a B/P ratio of 1.3 ^[1] . AAK1-IN-3 inhibits AAK1 in HEK293 cells (IC50=108 nM) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

In Vivo	AAK1-IN-3 (compound (R)-31; 30 mg/kg; sc; signle dose) causes a 46% reduction of μ2 phosphorylation in C57BL6 mice ^[1] .
	MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Richard A Hartz, et al. Bicyclic Heterocyclic Replacement of an Aryl Amide Leading to Potent and Kinase-Selective Adaptor Protein 2-Associated Kinase 1 Inhibitors. J Med Chem. 2022 Mar 10;65(5):4121-4155.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

