Proteins

Screening Libraries

Product Data Sheet

3-Oxo-5β-cholanoic acid

Cat. No.: HY-125801 CAS No.: 1553-56-6 Molecular Formula: $C_{24}H_{38}O_{3}$ 374.56 Molecular Weight: ROR Target:

Pathway: Metabolic Enzyme/Protease; Vitamin D Related/Nuclear Receptor

Storage: -20°C, stored under nitrogen

* In solvent: -80°C, 6 months; -20°C, 1 month (stored under nitrogen)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (266.98 mM; Need ultrasonic)

H₂O: < 0.1 mg/mL (ultrasonic; warming; heat to 60°C) (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6698 mL	13.3490 mL	26.6980 mL
	5 mM	0.5340 mL	2.6698 mL	5.3396 mL
	10 mM	0.2670 mL	1.3349 mL	2.6698 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 0.5% CMC-Na/saline water Solubility: 3.33 mg/mL (8.89 mM); Suspended solution; Need ultrasonic and warming and heat to 60°C
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.67 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.67 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.67 mM); Clear solution

BIOLOGICAL ACTIVITY

Description 3-Oxo-5β-cholanoic acid (Dehydrolithocholic acid), a bile acid metabolite, inhibits the diferentiation of TH17 cells by directly binding to the key transcription factor RORyt $(K_d=1.13 \mu M)^{[1]}$.

In Vitro Treatment with 3-Oxo-5β-cholanoic acid significantly reduced the activity of the RORyt reporter. These data suggest that 3-Oxo-5β-cholanoic acid probably inhibits TH17 cell differentiation by physically interacting with RORγt, and inhibiting its

transcriptional activity^[1].

	MCE has not independe	MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	TH17 cells ^[1] .	olanoic acid (Dehydrolithocholic acid) (0.3% (w/w); p.o.; for 1 week) significantly reduces the percentage of ileal . independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	B6 Jax mice (with a faecal slurry containing SFB) $^{[1]}$		
	Dosage:	0.3% (w/w)		
	Administration:	Gavaged; for 1 week		
	Result:	Significantly reduced the percentage of ileal TH17 cells.		

REFERENCES

[1]. Hang S, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019 Dec;576(7785):143-148.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA