Product Data Sheet

2,3-Dehydro-2-deoxy-N-acetylneuraminic acid

Cat. No.: HY-125798 CAS No.: 24967-27-9 Molecular Formula: $C_{11}H_{17}NO_{8}$ Molecular Weight: 291.25

Target: Influenza Virus Pathway: Anti-infection

3 years Storage: Powder -20°C

> In solvent -80°C 6 months

> > -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

H₂O: 33.33 mg/mL (114.44 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	3.4335 mL	17.1674 mL	34.3348 mL
2.55 25.44.0113	5 mM	0.6867 mL	3.4335 mL	6.8670 mL
	10 mM	0.3433 mL	1.7167 mL	3.4335 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	dehydro-2-Deoxyneuraminio	xyneuraminic Acid (Neu5Ac2en) is a potent neuraminidase (sialidase) inhibitor. N-acetyl-2,3-c Acid shows inhibitory activities against human neuraminidase enzymes with IC $_{50}$ s of 143, 43, U2, NEU3, and NEU4, respectively. Anti-influenza virus activity $^{[1][2]}$.	
In Vitro	[4].	N-acetyl-2,3-dehydro-2-Deoxyneuraminic Acid (Neu5Ac2en) (10-100 μ M) signifcantly inhibits sialidase activity in INS-1D cells [4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	model ^[3] .	xyneuraminic Acid (Neu5Ac2en) (10 mg/kg; i.p.; daily) attenuates pulmonary fibrosis in a mouse confirmed the accuracy of these methods. They are for reference only. Mice (Mouse model of pulmonary fibrosis) ^[3]	
	Dosage:	10 mg/kg	

Administration:	I.p.; daily (starting at day 10 after Bleomycin, and then euthanized at day 21
Result:	Inhibition of sialidases starting at day 10 after bleomycin attenuates fibrosis

REFERENCES

- [1]. Magesh S, et al. Design, synthesis, and biological evaluation of human sialidase inhibitors. Part 1: selective inhibitors of lysosomal sialidase (NEU1). Bioorg Med Chem Lett. 2008;18(2):532-537.
- [2]. Xiao A, et al. Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors. ACS Catal. 2018;8(1):43-47.
- [3]. Karhadkar TR, et al. Sialidase inhibitors attenuate pulmonary fibrosis in a mouse model. Sci Rep. 2017;7(1):15069. Published 2017 Nov 8.
- [4]. Minami A, et al. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid is a glucose-dependent potentiator of insulin secretion. Sci Rep. 2020;10(1):5198. Published 2020 Mar 23.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA