Product Data Sheet

1-NM-PP1

Cat. No.:HY-13942CAS No.:221244-14-0Molecular Formula: $C_{20}H_{21}N_5$ Molecular Weight:331.41Target:Src

Pathway: Protein Tyrosine Kinase/RTK

Storage: Powder -20°C 3 years

Powder -20° C 3 years 4° C 2 years In solvent -80° C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 27.5 mg/mL (82.98 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0174 mL	15.0871 mL	30.1741 mL
	5 mM	0.6035 mL	3.0174 mL	6.0348 mL
	10 mM	0.3017 mL	1.5087 mL	3.0174 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 2.5 mg/mL (7.54 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.54 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	1-NM-PP1, a cell-permeable PP1 analog, is a potent Src family kinases inhibitor with IC $_{50}$ s of 4.3 nM and 3.2 nM for v-Src-as1 and c-Fyn-as1, respectively $^{[1][2]}$.
IC ₅₀ & Target	IC50: 4.3 nM (v-Src-as1), 3.2 nM (c-Fyn-as1), 28 μ M (v-Src), 1 μ M (c-Fyn), 3.4 μ M (c-Abl), 29 μ M (CDK2), 24 μ M (CAMKII), 120 nM (cAbl-as2), 5 nM (CDK2-as1), 8 nM (CAMKII-as1) ^[2]
In Vitro	Cdk7 from Cdk7 ^{as/as} or Cdk7 ^{+/+} cells is immunoprecipitated and tested its kinase activity towards both a Pol II CTD-containing fusion protein (GST-CTD) and human Cdk2. Cdk7 recovered from the mutant, but not the wild-type, cells is inhibited by 1-NM-PP1 (1-NMPP1), with an IC ₅₀ of ~50 nM with either substrate. Replacement of wild-type Cdk7 with Cdk7 as/as also rendered growth of HCT116 cells sensitive to 1-NM-PP1. In the absence of 1-NM-PP1, the wild-type andCdk7 ^{as/as}

cells had population doubling times of ~17.9 and ~20.2 h, respectively, with similar cell-cycle distributions in asynchronous culture, indicating minimal impairment of Cdk7 function by the F91G mutation per se. The homozygous Cdk7^{as/as} cells are sensitive to 1-NM-PP1, however, with an IC $_{50}$ ~100 nM measured by cell viability (MTT) assays performed after 96 h of 1-NM-PP1 exposure. In contrast, wild-type HCT116 cells are resistant to 10 μ M 1-NM-PP1. Addition of 10 μ M 1-NM-PP1 retards G1/S progression by the mutant but not the wild-type cells. When added simultaneously with serum to the Cdk7^{as/as} cells, 1-NM-PP1 prevents any progression into S phase in the next 15 h. After 24 h, there is evidence of progression into S-phase by a fraction of Cdk7^{as/as} cells released from serum starvation directly into medium containing 1-NM-PP1, while a fraction remained in G1. The addition of 1-NM-PP1 3 h or 6 h after serum addition delays S-phase entry by ~7 h or by ~3 h, respectively^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

Immunoblotting and immunoprecipitation, and kinase assays of immune complexes, are carried out. To measure Cdk1/cyclin B assembly, extracts (200 μ g total protein) from cells in mitosis or G2 are pre-incubated with 2 μ M 1-NM-PP1 or DMSO, then added 500 ng purified cyclin B1, amino-terminally tagged with hexahistidine and the Myc epitope, and an ATP-regenerating system. Where indicated, incubations are supplemented with 400 ng purified Csk1 or 600 ng wild-type or analog-sensitive, T-loop-phosphorylated Cdk7/cyclin H/Mat1 complex. After 90 min at room temperature, Myc-cyclin B and associated proteins are immunoprecipitated with anti-Myc antibodies and immune complexes are subjected to immunoblotting, with anti-Myc and anti-Cdk1 antibodies, and tested for histone H1 kinase activity [3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Assay [1]

Wild-type or Cdk7^{as/as} HCT116 cells are synchronized by incubation in serum-free medium for 48 h and released into medium containing 10% fetal calf serum. Synchronization with thymidine or nocodazole, and analysis of cell-cycle distribution by flow cytometry, are performed. Cell viability is measured by MTT assay^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Biosci. 2021 May 21;11(1):93.
- Amyloid. 2019 Mar;26(1):24-33.
- Int J Parasitol. 2016 Jul;46(8):479-83.
- bioRxiv. 2023 Dec 19.
- Friedrich-Alexander University Erlangen-Nuremberg. Naturwissenschaftliche Fakultät. 2022 May.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Bishop A C, et al. Generation of Monospecific Nanomolar Tyrosine Kinase Inhibitors via a Chemical Genetic Approach. Journal of the American Chemical Society, 1999, 121(4):627-631.

[2]. Bishop AC, et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature. 2000 Sep 21;407(6802):395-401.

[3]. Larochelle S, et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell. 2007 Mar 23;25(6):839-50.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com