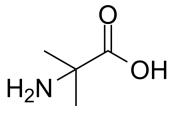
NSC 16590

Cat. No.: HY-Y0124 CAS No.: 62-57-7 Molecular Formula: C₄H₉NO₂ Molecular Weight: 103.12


Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease

Storage: Powder

-20°C 3 years 4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 33.33 mg/mL (323.22 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	9.6974 mL	48.4872 mL	96.9744 mL
	5 mM	1.9395 mL	9.6974 mL	19.3949 mL
	10 mM	0.9697 mL	4.8487 mL	9.6974 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS

Solubility: 33.33 mg/mL (323.22 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	NSC 16590 inhibits the production of endogenous ethylene in the cotyledonary segments of cocklebur.		
IC ₅₀ & Target	Microbial Metabolite Human Endog	genous Metabolite	
In Vitro	NSC 16590 (α -Aminoisobutyric acid , AIB) inhibits the production of endogenous ethylene in the cotyledonary segments of cocklebur (Xanthium pennsylvanicum Wallr.) seeds most strongly. NSC 16590 at 4 mM inhibits the formation of ethylene by about 50%, although the O_2 uptake of the segments is not affected even at 20 mM. NSC 16590 also inhibits ethylene formation in the stem segments of etiolated pea (Pisum satiuum L. cv. Alaska) seedlings. Kinetic analysis with cell free extracts from etiolated pea shoots reveals that NSC 16590 competitively inhibits the conversion of ACC into ethylene [1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

FERENCES	
	ninoisobutyric acid: A probable competitive inhibitor of conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant and Co 6, 1 September 1980, Pages 939-949.
	Caution: Product has not been fully validated for medical applications. For research use only.
	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
	Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com