Product Data Sheet

L-Octanoylcarnitine hydrochloride

Cat. No.: HY-W354498 CAS No.: 54377-02-5 Molecular Formula: C₁₅H₃₀ClNO₄ Molecular Weight: 323.86

Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease

Storage: Powder -20°C

3 years $4^{\circ}C$ 2 years In solvent -80°C 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (308.78 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0878 mL	15.4388 mL	30.8775 mL
	5 mM	0.6176 mL	3.0878 mL	6.1755 mL
	10 mM	0.3088 mL	1.5439 mL	3.0878 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	L-Octanoylcarnitine hydrochloride is a plasma metabolite and a physiologically active form of octanoylcarnitine. L-Octanoylcarnitine hydrochloride can be used for the research of breast cancer $^{[1][2][3]}$.
In Vitro	L-Octanoylcarnitine hydrochloride (0.2 mM) induces H_2O_2 release of rat liver mitochondria (RLM) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	L-Octanoylcarnitine hydrochloride decreases mucosal and detrusor force-flow respiration and respiratory conductance in male high fat diet (HFD) mice ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Schönfeld P, Reiser G. Inhibition of β-oxidation is not a valid therapeutic tool for reducing oxidative stress in conditions of neurodegeneration. J Cereb Blood Flow Metab. 2017 Mar;37(3):848-854.

2]. Hanna Kosnik, et al. CHRONIC HIGH FAT DIET IMPAIRS DETRUSOR MITOCHONDRIAL FATTY ACID OXIDATION IN MALE BUT NOT FEMALE MICE. Journal of JrologyBladder & Urethra: Anatomy, Physiology & Pharmacology I (MP11)1 Apr 2019.	
3]. Kim M, et al. Association between arterial stiffness and serum L-octanoylcarnitine and lactosylceramide in overweight middle-aged subjects: 3-year follow-up stu PLoS One. 2015 Mar 17;10(3):e0119519.	udy.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com